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AN ANALYTICAL MODEL FOR THE PREDICTION
OF THE VIBRATION RESPONSE OF ROLLING
ELEMENT BEARINGS DUE TO A LOCALIZED

DEFECT

N. T  A. C

ITMME Centre, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India
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An analytical model has been proposed for predicting the vibration frequencies of rolling
bearings and the amplitudes of significant frequency components due to a localized defect
on outer race, inner race or on one of the rolling elements under radial and axial loads.
The model predicts a discrete spectrum having peaks at the characteristic defect frequencies
and their harmonics. In the case of an inner race defect or a rolling element defect under
a radial load, there are sidebands around each peak. The effect of load and pulse shape
on the vibration amplitude has been considered in the model. Typical numerical results for
a 6002 deep groove ball bearing have been obtained and plotted. A comparison with the
experimental values obtained from published literature shows that the model can be
successfully used to predict amplitude ratios among various spectral lines.
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1. INTRODUCTION

The study of vibration generated by rolling element bearings of a rotating machine is
important for condition monitoring and system maintenance. Even geometrically perfect
bearings may generate vibration due to varying compliance [1] or due to the time-varying
contact forces which exist between the various components of the bearing [2].

However, for condition monitoring it is more important to know the nature of vibration
caused by bearing defects, which may be classified into distributed and localized defects.
Surface roughness, waviness, misaligned races and off-size rolling elements are included
in the class of distributed defects. The localized defects, on the other hand, include cracks,
pits and spalls caused by fatigue on the rolling surfaces. When such a defect on one surface
strikes its mating surface, a pulse of short duration is produced which excites the natural
frequencies of bearing parts and housing structures. For a constant rotational speed, these
pulses are generated periodically, and the frequency of pulse generation, termed the
‘‘characteristic defect frequency’’, can be determined uniquely by the location of the defect;
whether it is on the inner race, outer race or on one of the rolling elements [3, 4].
Expressions for characteristic defect frequencies for a rolling element bearing with a
stationary outer race are shown in Appendix I.

Excitation of the natural frequencies of the bearing elements because of the presence
of local defect results in an increase in the vibration energy at these high frequencies
(q5 kHz) [3], but the components at the characteristic defect frequencies appear in the low
frequency band of the frequency spectrum.

In this paper an analytical model has been developed to predict frequency and amplitude
for this low frequency band due to a local defect in a bearing element. It is assumed that
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the vibration signal received at the transducer is the vibration of races transmitted through
and affected by transmitting media such as the housing, etc. Therefore expressions have
been presented here for the amplitude of vibratory displacement of races due to a localized
defect taking into account the effects of the load (both radial and axial), the location of
the defect and the shape of the generated pulse.

2. GENERATION OF THE MATHEMATICAL MODEL

In order to determine the vibration response, the bearing rings are assumed to be isolated
continuous systems. It is further assumed that the outer race remains stationary and that
the inner race rotates at the shaft speed.

The natural frequency for the ith mode of flexural vibration of the races can be obtained
from the expression [3, 5]

vi =
i(i2 −1)

z1+ i2XEI
ra4, (1)

where i is the number of sine waves around the circumference (=2, 3, 4, . . .), a is the radius
of neutral axis, I is the moment of inertia of the cross-section, E is the modulus of elasticity
and r is the mass per unit length.

The mode summation method [6] as applied by Meyer et al. [2] is used here to determine
the vibratory response. It is assumed that the deflection pattern of the bearing rings is the
sum of sine and cosine waves around the rings.

2.1.   

With the help of Lagrange’s equation, we obtain the equation of motion for the outer
race as

q̈i,sin +v2
i qi,sin =Qi,sin/Mi , q̈i,cos +v2

i qi,cos =Qi,cos/Mi , (2)

where qi,sin and qi,cos are the generalized co-ordinates for the ith sine and cosine modes, Qi,sin

and Qi,cos are the generalized forces for the ith sine and cosine modes, and Mi and vi are
the generalized mass and natural frequency for the ith mode.

For the deflection of the inner race, the differential equation can be expressed as

q̈'i,sin +v'2i q'i,sin =Q'i,sin/M'i , q̈'i,cos +v'2i q'i,cos =Q'i,cos/M'i , (3)

where q'i,sin, q'i,cos, Q'i,cos, Q'i,sin, M'i and v'i denote the corresponding parameters for the inner
race.

2.2.  

In order to obtain the generalized force Qi , it is to be noted that the external excitation
is the pulse generated whenever the defect is struck by rolling elements in the case of a
race defect, or the defect on the rolling element strikes the races. The generalized force
for a bearing ring may be expressed as

Qi =g
2p

0

p(f, t)Xi (f) df, (4)

where Xi is the mode shape and p(f, t) is the excitation force which is the product of load
on the rolling element, P, and the pulse shape, F.
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2.2.1. The ball/roller load
The magnitude of the generated pulse depends on the ball/roller load, P, at the time

of excitation. Therefore, in the case of a stationary defect, P, as well as the magnitude of
the pulse, remains constant. However, with a change in defect position, P, as well as the
pulse magnitude, may attain a new constant value.

In case of a moving defect (inner race defect or rolling element defect), the load at the
point of excitation does not remain constant. Since a rolling element moves at the cage
speed vc , the load on the rolling element causing excitation due to the moving defect can
be expressed as P(vct).

In the case of pure axial loading, the load on any rolling element at any arbitrary
position is constant. Therefore

P(vct)=Pt =constant.

However, for radial loading the load will change with the angular position, as shown
in Figure 1. The load on the rolling element at any angle f (=vct) can be expressed as [7]

P(f)=6Pmax [1− (1/2o)(1−cos f)]n,
0,

−f1 QfQf1,
elsewhere,

(5)

where Pmax is the maximum load in the direction of the radial load, o is the load distribution
factor, 2f1 is the extent of load zone and n= 3

2 for ball bearings and 10
9 for roller bearings.

Since the load is periodic in nature, having a frequency equal to the cage frequency, and
the load is evenly distributed about the point of maximum deflection, the ball/roller load
can be expanded in Fourier series for even functions. Therefore, for a pure radial load

P(vct)=Po + s
r

Pr cos rvct. (6)

The Fourier coefficients Po and Pr can be determined by the following method.
Since (1−cos f)/2oQ 1 for a non-zero load, P(f) can be expanded in a binomial series,

P(f)=Pmax [A0 +A1 cos f+A2 cos 2f+A3 cos 3f], (7)

Figure 1. The load distribution in a bearing under radial load.
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where

A0 =1−
n
2o

+
n(n−1)

8o2 ×
3
2

−
n(n−1)(n−2)

48o3 ×
5
2
, (8a)

A1 =
n
2o

−
n(n−1)

8o2 ×2+
n(n−1)(n−2)

48o3 ×
15
4

, (8b)

A2 =
n(n−1)

8o2 ×
1
2

−
n(n−1)(n−2)

48o3 ×
3
2
, (8c)

A3 =
n(n−1)(n−2)

48o3 ×
1
4
. (8d)

Therefore,

Po =
1
Tc g

Tc /2

−Tc/2

P(vct) dt,

where Tc is the time period for cage motion=2p/vc ,

Po =
Pmax

p
[A0f1 +A1 sin f1 + (A2/2) sin 2f1 + (A3/3) sin 3f1], (9)

Pr =
2
Tc g

Tc /2

−Tc/2

P(vct) cos rvct dt

=
Pmax

p $2A0

r
sin rf1 + s

3

l=1

Al 6sin (r+ l)f1

(r+ l)
+

sin (r− l)f1

(r− l) 7%. (10)

2.2.2. The pulse shape
Because of its very short duration, there is a tendency to neglect the pulse width and

to consider it an impulse. However, it has been pointed out in references [4, 8] that the
severity, extent and age of the damage can be better represented by pulses. These factors
certainly influence the amplitude of response. Therefore, in the present work, pulses of
finite width have been considered. Since these pulses occur at regular time intervals, they
are periodic in nature, and the frequency of occurrence depends on the location of the
defect.

Some typical pulse forms are shown in Figure 2. In practice, the pulse forms may not
be of such a regular shape as shown in the figure. The pulse width, DT, can be determined
by dividing the defect width by the relative velocity between the mating elements [4]. The
relative velocity, vr , between the rolling element and either of the races, can be expressed
as

vr =
Dvs

4 01−
d2

D2 cos2 a1. (11)

Therefore

DT= b/vr , (12)

where b is the width of the defect.
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Figure 2. Different pulse forms: (a) rectangular; (b) triangular; (c) half-sine pulse.

The height of the pulse, K, also has a significant influence on the amplitude. This also
changes with the severity and age of the defect and may even decrease with the
advancement of the defect [8].

For simplicity, we assume these pulses to be even functions (Figure 2). Therefore they
can be expanded in a Fourier series,

F(t)=Fo + s
s

Fs cos svt, (13)

where v is the frequency of the generated pulses, which depends on the location of the
defect. The Fourier coefficients, Fo and Fs , for different pulse forms are given in
Appendix II.

2.2.3. Mode shape
The mode shape for the bearing ring can be assumed as

Xi (f)= sin if+cos if. (14)

With the assumed mode shape, the generalized mass Mi for a bearing ring equals the
actual mass of the ring. Therefore,

Mi =2pra. (15)

3. SOLUTIONS FOR VARIOUS DEFECT LOCATIONS

Equations (2) and (3) are solved for the generalized co-ordinates, for different Qi (or Q'i )
derived for the various types of defects considered. The total deflection is obtained by
multiplying each generalized co-ordinate by its mode shape and then linearly adding them
for all of the modes.

3.1.   

Since the outer race is assumed to be stationary, the rolling element load is a function
of the angular position of the defect, which remains constant. Therefore, the generalized



.   . 280

force from equation (4) can be expressed as

Qi =F(t) g
2p

0

P(f)Xi (f)d(f− j) df

=F(t)P(j)Xi (j). (16)

The pulse F(t) has a time period of 2p/vc . Therefore, the generalized force causing
vibration of the outer race due to the impact of the kth rolling element can be expressed
as

Qi =P(j)Xi (j) s
s

Fs cos s(vct− uk ), (17)

where uk =2p k/Z, Z being the total number of rolling elements in the bearing.
Qi obtained from equation (17) is substituted into equation (2), which is then solved for

the generalized co-ordinates. The deflection of the outer race due to the impact of the kth
rolling element can be expressed as

yk =0si

P(j)Xi (j)
Miv

2
i 1 s

s

Fs cos s(vct− uk ). (18)

Therefore the deflection of the bearing ring due to the impact of all the rolling elements
can be obtained by linearly adding the responses due to the impact of individual rolling
elements. It is to be noted that summation over uk makes all terms in the summation over
s equal to zero, except those for which s is a multiple of Z. Therefore, the total radial
deflection is as follows:

y=0si

P(j)Xi (j)
Miv

2
i 1 · s

s

ZFZs cos Zsvct . (19)

Therefore, the frequency spectrum of the displacement for both radial and axial load
will have components at Zjvc (j=1, 2, 3, . . .); i.e., the outer race defect frequency and its
multiples. The amplitude of the component at Zjvc is

YZjvc =0si

P(j)Xi (j)
Miv

2
i 1ZFZj . (20)

For an axial load, P(j) is constant for any position of the defect, but for a radial load,
P(j) changes with the change in position of the defect.

3.2.   

When a defect on the inner race is struck by the rolling elements, the response obtained
is mainly due to the vibration of inner race. The relevant geometry is shown in Figure 3.
The frequency of impact of a particular rolling element with a defect on the inner race
is (vc −vs ).

Since the inner race is not stationary, the ball/roller load is a function of time. The



ωct

ωc

ωs

ωst

     281

generalized force due to the impact of inner race defect with a rolling element is

Q'i =P(vct)F(t) g
2p

0

Xi (f)d[f−(vc −vs )t] df

=P(vct)F(t)Xi [(vc −vs )t]. (21)

The pulse F(t) has a period of 2p/(vc −vs ) and, therefore, F(t) can be expressed as

F(t)=F0 + s
s

Fs cos s(vc −vs )t. (22)

3.2.1. Axial loading
In the case of axial loading, the generalized force due to the striking of the defect by

the kth rolling element is

Q'i =PtFo [sin i(vct−vst− uk )+ cos i(vct−vst− uk )]

+ s
s

PtFs

2
[sin (i+ s)(vct−vst− uk )+ sin (i− s)(vct−vst− uk )

+ cos (i+ s)(vct−vst− uk )+ cos (i− s)(vct−vst− uk )]. (23)

Substituting the sine and cosine terms of Q'i from equation (23) into equation (3) and
solving it, the generalized co-ordinates q'i,sin and q'i,cos can be obtained. While doing so, it
has been considered that

v'2i �i2(vc −vs )2, (i2 s)2(vc −vs )2.

Therefore, the response of the inner race due to the impact of the kth rolling element

Figure 3. The bearing geometry for an inner race defect.
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with the defect is

y'k = s
i

[q'i,sin sin if+ q'i,cos cos if]

= s
i

PtFo

M'i v'2i
cos i[(vc −vs )t− uk −f]

+ s
i

s
s

PtFs

2M'i v'2i
cos [(i2 s)(vct−vst− uk )− if]. (24)

Therefore, the total deflection due to the impact of all the rolling elements can be
obtained by adding all of the yk linearly and taking care of the phase difference uk . Hence
the deflection of the inner race can be expressed as

y'= s
i

ZPtFo

M'ziv'2zi
cos Zi[(vc −vs )t−f]

+ s
i

s
s

ZPtFs

M'i v'2i
cos [(i2 s)(vct−vst)− if]dT (Zj− i2 n), (25)

where dT is Kronecker delta function and j=1, 2, 3, . . . .
The frequency spectrum of the deflection will have components at Zj(vc −vs ); i.e., the

inner race defect frequency and its harmonics. The amplitude of these components will be

YZj(vc −vs) =
ZPtFo

M'Zjv'2Zj
+ s

s

ZPtFs

2M'Zj2 sv'2Zj2 s
. (26)

3.2.2. Radial loading
In the case of a bearing under pure radial load, the generalized force for the kth rolling

element can be obtained from equation (21) as

Q'i =$Po + s
i

Pr cos r(vct− uk )%$Fo + s
s

Fs cos s(vct−vst− uk )%
×Xi [(vc −vs )t− uk ]. (27)

Following the same procedure as in the case of axial loading, the total radial deflection
for the inner race can be obtained. The frequency spectrum of the deflection will have peaks
at Zj (vc −vs ); i.e., inner race defect frequency and its multiples. The amplitude of these
peaks will be

YZj(vc −vs) =
ZPoFo

M'Zjv'2Zj
+ s

s

ZPoFs

2M'Zj2 sv'2Zj2 s
. (28)

In addition to these peaks, the spectrum will have sidebands at frequencies
Zj(vc −vs )2 rvs ; i.e., the sidebands will be at the shaft frequency and its multiples about
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Figure 4. The bearing geometry for a rolling element defect.

the inner race defect frequency and its multiples. The amplitude of the sideband at
Zj(vc −vs )+ rvs will be

YZj(vc −vs)+ rvs =
ZPrFo

2M'Zj− rv'2Zj− r
+ s

i

s
s

ZPrFs

4M'i v'2i
dT [(Zj− r)− (i2 s)]. (29)

3.3.   

The defect on the rolling element, which is spinning and revolving, strikes both the inner
as well as the outer race (Figure 4). Therefore the resultant response is the sum of the
deflections of the inner and outer races.

3.3.1. Axial loading
The generalized force for vibration of the outer race due to the rolling element defect

is

Qi =PtF(t)Xi (vbt) (30)

The pulse F(t) has a period of 2p/vb . Therefore,

F(t)=Fo + s
s

Fs cos svbt. (31)

Substituting the value of Qi from equation (30) into equation (2), we obtain the
deflection of the outer race as

y= s
i

PtFo

Miv
2
i
cos i(vbt−f)

+ s
i

s
s

PtFs

2Miv
2
i
cos [(i2 s)vbt− if]. (32)

The defect on the rolling element makes an impact with the inner race at an interval
of a half-time period (=p/vb ) after making an impact with the outer race. Therefore, the
deflection of the inner race, y', has a phase difference of p with the deflection of outer race.
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Therefore, the resultant response is

yR = y+ y'. (33)

Thus, we obtain

yR = s
i

Pt 0 Fo

M2i−1v
2
2i−1

−
Fo

M'2i−1v'22i−11 cos (2i−1)(vbt−f)

+ s
i

s
s

Pt

2 0 Fs

Miv
2
i
−

Fs

M'i v'2i 1 cos [(i2 s)vbt− if]dT [(2j−1)− (i2 s)]

+ s
i

Pt 0 Fo

M2iv
2
2i
+

Fo

M'2iv'22i 1 cos 2i(vbt−f)

+ s
i

s
s

Pt

2 0 Fs

Miv
2
i
−

Fs

M'i v'2i 1 cos [(i2 s)vbt− if]dT [(2j− i2 s), (34)

where j=1, 2, 3, . . . .
Therefore, the frequency spectrum will have significant components at 2jvb ; i.e., the

rolling element defect frequency and its multiples. The amplitude of the component at 2jvb

Figure 5. The frequency spectrum for an outer race defect at 10° and a radial load of (a) 20 kg and (b) 60 kg.
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Figure 6. The variation in the amplitude for an outer race defect at different positions: (a) radial=20 kg;
(b) axial load=20 kg.

is

Y2jvb =Pt 0 Fo

M2jv
2
2j
+

Fo

M'2jv'22j 1+ s
s

Pt

2 0 Fs

M2j2 sv
2
2j2 s

+
Fs

M'2j2 sv'22j2 s1. (35)

In addition to these main components, there will be smaller components at vb and its
odd multiples. However, these components will not have any significant presence in the
frequency spectrum of vibration due to rolling element defects.

3.3.2. Radial loading
In the case of a bearing under pure radial load, the generalized force for the ith mode

is

Qi =P(vct)F(t)Xi (vbt), (36)

where P(vct) and F(t) are given by equations (6) and (31) respectively.
Following the same procedure as that adopted in case of axial loading, we can obtain

the deflections of the outer and inner races, and by combining them the resultant response
can be obtained.

The frequency spectrum for the resultant response will have main peaks at 2jvb , the
harmonics of the rolling element defect frequency. The amplitude of the component at 2jvb

is

Y2jvb =Po $ Fo

M2jv
2
2j
+

Fo

M'2jv'22j %+ s
s

Po

2 $ Fs

M2j2 sv
2
2j2 s

+
Fs

M'2j2 sv'22j2 s%. (37)

In addition to these peaks, there will be sidebands at the cage frequency and its multiples
(rvc ) about the rolling element defect frequency and its multiples (2jvb ). The amplitude
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of the sideband at 2jvb 2 rvc will be

Y2jvb 2 rvc =
Pr

2 $ Fo

M2jv
2
2j
+

Fo

M'2jv'22j %+ s
s

Pr

2 $ Fs

M2j2 sv
2
2j2 s

+
Fs

M'2j2 sv'22j2 s%. (38)

4. RESULTS AND DISCUSSION

A 6002 deep groove ball bearing with normal clearance has been considered for
obtaining numerical results for the expressions for the frequencies and amplitudes obtained
in section 3. The dimensions of the 6002 ball bearing are as follows: 15 mm bore, 32 mm
outside diameter, 9 mm width, 4·76 mm ball diameter and 23·5 mm pitch diameter. The
groove radii for the inner and outer races are 2·43 mm and 2·57 mm respectively. They
have nine balls and the nominal contact angle is 0°. In the case of axial loading the contact
angle should be 5–15°, but for simplicity a contact angle of 0° has been assumed. A spindle
speed of 1500 rpm has been considered, and the value of the pulse height, K, has been
assumed to be 1.

For the bearing geometry and spindle speed as mentioned above, the significant
frequency components (as shown in Appendix I) are the shaft rotation frequency, 25 Hz,
the cage frequency, 9·968 Hz, the outer race defect frequency, 89·7 Hz, the inner race defect
frequency, 135·2 Hz, and the ball defect frequency, 118·3 Hz.

With the help of the above-mentioned dimensions of a bearing having steel races, the
natural frequencies and generalized masses of the races for different modes can be obtained

Figure 7. The frequency spectrum for an inner race defect causing a rectangular pulse: (a) radial load=20 kg;
(b) axial load=20 kg.
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from equations (1) and (15) respectively. For this purpose, the bearing rings are assumed
to have a rectangular cross-section, with grooves cut out of them, and the neutral surface
is assumed to lie at the centre of the races. The values of Po and Pr for different radial
loads can be obtained from equations (9) and (10), respectively, by substituting the values
of Pmax and f1, which can be found following the procedure laid down in reference [7].
The values of Pt can also be obtained from the method given in reference [7]. The Fourier
coefficients for the generated pulses, Fo and Fs can be determined using the expressions
given in Appendix II, and a defect width of 150 mm has been considered to obtain these
values. A computer program has been developed to determine the values of these
parameters following the procedures mentioned above. The program also considers
substitution of these values in equations (20), (26), (28), (29), (35), (37) and (38) to obtain
the amplitudes of displacement for vibration generated due to defects on various bearing
elements. These values are then plotted.

In Figures 5(a) and 5(b) it is shown that, for the outer race defect, there is a significant
increase in the amplitude level with the increase in load. In Figure 6(a) it is shown that
there is a large variation in amplitude for various positions of outer race defect under radial
load. However, in Figure 6(b) it is shown that the variation is small for an axial load. This
is due to the fact that in the case of a radial load, the amplitude is affected by the load
as well as the mode shape, whereas in the case of an axial load, the amplitude will be
affected by the mode shape only for different positions of the defect. The variation in
amplitude due to the different pulse forms generated is also shown in Figures 6(a) and 6(b).
The amplitude is a maximum at a 20° defect position because the contribution of the mode
shape is a maximum at that position.

Figure 9. The frequency spectrum for a rolling element defect causing a rectangular pulse: (a) radial
load=20 kg; (b) axial load=20 kg.
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In Figures 7(a) and 7(b) it is shown that the amplitude of the deflection at the inner
race defect frequency and its second harmonics remains the same. However, the drop in
amplitude in Figure 7(b) for higher harmonics may be due to failure of the analysis for
the higher modes. In Figure 7(a) it is shown that the sidebands are evenly distributed about
the main peak at the defect frequency.

In Figures 8(a) and 8(b) it is shown that with an increase in the load there is a significant
increase in the amplitude of vibration and a decrease in the peak to sideband ratio. In
Figures 8(b), (c) and (d) it is shown that there is a wide variation in the amplitude for
different shapes of pulses having the same width and height.

In Figures 9(a) and 9(b) are shown the amplitudes of the responses for a rolling element
defect frequency and its higher harmonies, in the case of radial and axial loads. In the case
of a radial load, the sidebands occur symmetrically about the main peaks. In
Figures 10(a)–(d) it is shown that the effect of the load and the pulse shape in the case
of a rolling element defect under a radial load are similar to those for inner race defect.

It has been observed that the amplitude of the response for the outer race defect is much
higher than those for other defects. Similar observations were also made in reference [9]
about the overall r.m.s. level of acceleration obtained experimentally from a similar
bearing. One of the reasons for this may be the fact that the natural frequencies of the
outer race are smaller than the corresponding natural frequencies of the inner race.

The prediction of absolute amplitudes of vibration due to bearing defects will not be
possible using this model, because that procedure has to take into account the effects of
the total rotor–bearing system, including those of the shaft and the housing. However, the
results of this analysis can be used to assess the approximate amplitude ratios among
various spectral lines.

For this purpose, a comparison of the analytical values of the velocity amplitudes with
the experimental values obtained from reference [9] for vibration generated due to the inner
race defect (1·5 mm wide under a 60 kg radial load at 1500 rpm) is shown in Figure 11.
The analytical values of the velocity amplitudes, determined by multiplying the
displacement amplitudes by the corresponding frequencies, have been normalized with
respect to the experimental value of the amplitude at the inner race defect frequency
(135 Hz). The figure shows fair agreement between the analytical and experimental values.
However, this comparison is restricted to the components at the inner race defect frequency
and the sidebands about this component at multiples of the shaft frequency. Other
significant components of the experimental spectrum [9], especially the peaks at the
multiples of the shaft frequency, could not be predicted by this model.

Figure 11. A comparison of analytical values of velocity amplitudes for an inner race defect with experimental
values [9]: defect width=1·5 mm, radial load=60 kg, speed=1500 rpm (analytical values normalized with
respect to the experimental value at 135 Hz).
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5. CONCLUSIONS

The model presented here predicts a frequency spectrum having peaks at characteristic
defect frequencies with modulations in the case of a rolling element defect and an inner
race defect under a radial load. The amplitudes at these frequencies are also predicted for
various defect locations. The amplitude for the outer race defect is found to be quite high
in comparison to those for the inner race defect and the rolling element defect. The
amplitude level is also found to increase with an increase in load; and it is affected by the
shapes of the generated pulses.
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APPENDIX I

For a bearing with a stationary outer race,

cage frequency, vc (rad/s)=
vs

2 01−
d
D

cos a1,

ball spinning frequency, vb (rad/s)=
Dvs

2d $1−
d2

D2 cos2 a%,

inner race defect frequency, vid (rad/s)=Z(vs −vc )

=
Zvs

2 01+
d
D

cos a1,

outer race defect frequency, vod (rad/s)=Zvc

=
Zvs

2 01−
d
D

cos a1,

ball defect frequency, vbd (rad/s)=2vb

=vs
D
d 01−

d 2

D2 cos2 a1,

where vs is the shaft rotation frequency in rad/s, d is the ball diameter, D is the pitch
diameter, Z is the number of rolling elements and a is the contact angle.
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APPENDIX II: FOURIER COEFFICIENTS

For rectangular pulses (Figure 2(a)),

F(t)= 8K,

0,

−
DT
2

Q tQDT
2

,

otherwise

Fo =
1
T g

DT/2

−DT/2

K dt

=Km,

where

m=DT/T,

Fs =
4
T g

DT/2

0

K cos svt dt

=
2K
ps

sin psm.

For triangular pulses (Figures 2(b)),

Fo =Km/2, Fs =(2K/p2s2m)(1−cos psm).

For half-sine pulses (Figure 2(c)),

Fo =2Km/p, Fs =[4Km/p(1−4s2m2)] cos (psm).


